На главную   Контакты   Поиск   Карта сайта   Ссылки 
рефераты
 

Шпаргалка по геометрии и алгебре, стр. 2

2. (p) ð (p`); [p)ð[p`); aða`; ÐAðÐA`

3. Не всякое подобие- гомотетия

NB! S` = k² S``; V ` = k 3 V ``

Плоскости.

Т. Если прямая, Ï к.-л. плоскости a , | | к.-л. прямой, Î a, то она | | a

Т. (а) | | (b), через (а)и (b) провести плоскость, то линия их пересеч.| | (а)и (b)

T. (Признак парал. 2-х плоск.).Если 2 пересек. прямые 1-й a | | двум пересек. прямым другой b, то a | | b.

Т. Если 2 парал. Плоск-ти пересеч. 3-й, то линии пересечения | |.

Т. Через тчку вне плоскости можно провести плоск-ть | | данной и только 1.

Т. Отрезки парал. Прямых, заключенные между 2-мя плоскостями, =.

Т. Признак ^ прямой и пл-сти.Если прямая, перек-ая плос-ть, ^каждой из 2-х перек-ся прямых, то прямая и пл-сть ^.

Т. 2 ^ к пл-сти | |.

Т. Если 1 из 2-х паралл. прямых ^, то и другая ^ плоскости.

Т. Признак ^ 2-х плос-тей. Если пл-сть проходит через ^ к др. п-сти, то он ^ этой л-сти.

Дано [a)^ b,[a) Îa,a Èb= (p).Д-ть: a ^ b

Док-во. [a)^ b=·М. Проведем (b) через М, (b)^(p). (a)Ù(b) - линейный Ð двугранного угла между a и b. Так как [a)^ bð(a)^(b)ð (a)Ù(b)=90°ða ^ bn

Т. Если 2 пл-сти взаимно ^, то прямая

1-й пл-сти ^ линии пересеч. пл-стей, ^ 2-й пл-сти.

Т. О 3-х ^.. Для того, чтобы прямая, леж-я в пл-сти,, была ^ наклонной, необх-мо и достаточно, чтобы эта прямая была ^ проекции наклонной.

Многогранники

Призма. V = S осн × a - прямая призма

a - боковое ребро , S пс- S ^-го сечения

V = S пс × а - наклонная призма

V = Sбок. пов-сти призмы + 2Sосн.

Если основание пр. = параллелограмм, то эта призма - параллелепипед.

V=h Sосн. ; Vпрямоуг.параллел-да = abc

S=2(ab+ac+bc)

Пирамида V= 1/3 * НS осн. S=S всех Ñ.

Фигуры вращения

Цилиндр V=pR²H; S= 2pR (R+H)

Конус V= 1/3 * НS осн= 1/3 * pR²H

S= Sосн+ Sбок= pR (r + L); L-образующая

Сфера «оболочка» S= 4pR²

Шар М= 4/3 pR3

ARCSIN a

-p/2£arcsin a £p/2 sin(arcsin a)=a

arcsin (-a)= -arcsin a

a

0

1/2

Ö2/2

Ö3/2

1

arcsin a

0

p/6

p/4

p/3

p/2

SIN X= A

x=(-1)n arcsin a +pk

sin x=0

x=pk

sin x=1

x=p/2+2pk

sin x=-1

x=-p/2+2pk

ARCCOS a

0 £arccos a £p cos(arccos a)=a

arccos (-a)=p -arccos a

a

0

1/2

Ö2/2

Ö3/2

1

arccos a

p/2

p/3

p/4

p/6

0

COS X= A

x=± arccos a +2pk

cos x=0

x=p/2+pk

cos x=1

x=2pk

cos x=-1

x=p+2pk

ARCTG a

-p/2£arctg a £p/2 tg(arctg a)=a

arctg (-a)= -arctg a

a

0

Ö3/3

1

Ö3

tg a

0

p/6

p/4

p/3

TG X= A

x=± arctg a +pk

sina*cosb=1/2[sin(a-b)+sin(a+b)]

sina*sinb=1/2[cos(a-b)-cos(a+b)]

cosa*cosb=1/2[cos(a-b)+cos(a+b)]

sina*cosb=1/2[sin(a-b)+sin(a+b)]

sina*sinb=1/2[cos(a-b)-cos(a+b)]

cosa*cosb=1/2[cos(a-b)+cos(a+b)]

sina+sinb=2sin(a+b)/2 * cos(a-b)/2

sina-sinb=2sin(a-b)/2 * cos(a+b)/2

cosa+cosb=2cos(a+b)/2 * cos(a-b)/2

cosa-cosb=-2sin(a+b)/2 * sin(a-b)/2

(a+b)2=a2+2ab+b2

(a-b)2=a2+2ab+b2

(a+b+c)2=a2+b2+c2+2ab+2ac+2bc

a2-b2=(a-b)(a+b)

(a+b)3=a3+3a2b+3ab2+b3

(a-b)3=a3-3a2b+3ab2-b3

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+ b2)

0

p/6

p/4

p/3

p/2

p

2/3p

3/4p

5/6p

3/2p

0

30°

45°

60°

90°

180

120°

135°

150°

270°

sin

0

1/2

Ö2/2

Ö3/2

1

0

Ö3/2

Ö2/2

1/2

-1

cos

1

Ö3/2

Ö2/2

1/2

0

-1

-1/2

-Ö2/2

-Ö3/2

0

tg

0

1/Ö3

1

Ö3

-

0

-Ö3

-1

-1/Ö3

-

ctg

-

Ö3

1

1/Ö3

0

-

-1/Ö3

-1

-Ö3

0

sin2+c

<< назад    вперед >>

© 2006. Все права защищены.