На главную   Контакты   Поиск   Карта сайта   Ссылки 
рефераты
 

Анализ и синтез одноконтурной системы автоматического регулирования, стр. 1

Содержание:

Содержание

2

Введение

3

1.

Общая часть

1.1.

Основные понятия

6

1.2.

Описание исходной схемы автоматического регулирования

9

1.3.

Разработка функциональной схемы САР

13

2.

Расчетная часть

2.1.

Параметрический синтез и анализ одноконтурной САР

14

2.1.1.

Оценка возможности статического регулирования

15

2.1.2.

Оценка возможности астатического регулирования

20

2.1.3.

Исследование качества одноконтурной САР

22

3.

Разработка контура регулирования заданным параметром

25

Заключение

27

Список используемой литературы

28

Введение

Современная теория автоматического регулирования является основной частью теории управления. Система автоматического регулирования состоит из регулируемого объекта и элементов управления, которые воздействуют на объект при изменении одной или нескольких регулируемых переменных. Под влиянием входных сигналов (управления или возмущения), изменяются регулируемые переменные. Цель же регулирования заключается в формировании таких законов, при которых выходные регулируемые переменные мало отличались бы от требуемых значений. Решение данной задачи во многих случаях осложняется наличием случайных возмущений (помех). При этом необходимо выбирать такой закон регулирования, при котором сигналы управления проходили бы через систему с малыми искажениями, а сигналы шума практически не пропускались.

Теория автоматического регулирования прошла значительный путь своего развития. На начальном этапе были созданы методы анализа устойчивости, качества и точности регулирования непрерывных линейных систем. Затем получили развитие методы анализа дискретных и дискретно-непрерывных систем. Можно отметить, что способы расчета непрерывных систем базируются на частотных методах, а расчета дискретных и дискретно-непрерывных — на методах z-преобразования.

В настоящее время развиваются методы анализа нелинейных систем автоматического регулирования. Нарушение принципа суперпозиции в не­линейных системах, наличие целого ряда чередующихся (в зависимости от воздействия) режимов устойчивого, неустойчивого движений и автоколебаний затрудняют их анализ. Еще с большими трудностями встречается проектировщик при расчете экстремальных и самонастраивающихся систем регулирования.

Как теория автоматического регулирования, так и теория управления входят в науку под общим названием «техническая кибернетика», которая в настоящее время получила значительное развитие. Техническая кибернетика изучает общие закономерности сложных динамических систем управления технологическими и производственными процессами. Техническая кибернетика, автоматическое управление и автоматическое регулирование развиваются по двум основным направлениям: первое связано с постоянным прогрессом и совершенствованием конструкции элементов и технологии их изготовления; второе — с наиболее рациональным использованием этих элементов или их групп, что составляет задачу проектирования систем.

Проектирование систем автоматического регулирования можно вести двумя путями: методом анализа, когда при заранее выбранной структуре системы (расчетным путем или моделированием) определяют ее параметры;

методом синтеза, когда по требованиям, к системе сразу же выбирают

наилучшую ее структуру и параметры. Оба эти способа получили широкое практическое применение и поэтому достаточно полно освещены в настоящей книге.

Определение параметров системы, когда известна ее структура и требо­вания на всю систему в целом, относится к задаче синтеза. Решение этой задачи при линейном объекте регулирования можно найти, используя, например, частотные методы, способ корневого годографа или изучая траектории корней характеристического уравнения замкнутой системы. Выбор корректирующего устройства методом синтеза в классе дробно-рациональных функций комплексного переменного можно выполнить с помощью графоаналитических методов. Эти же методы позволяют синтезировать корректирующие устройства, подавляющие автоколебательные и неустойчивые периодические режимы в нелинейных системах.

Дальнейшее развитие методы синтеза получили на основе принципов максимума и динамического программирования, когда определяется опти­мальный с точки зрения заданного критерия качества закон регулирования, обеспечивающий верхний предел качества системы, к которому необходимо стремиться при ее проектировании. Однако решение этой задачи практически не всегда возможно из-за сложности математического описания физических процессов в системе, невозможности решения самой задачи оптимизации и трудностей технической реализации найденного нелинейного закона регулирования. Необходим

    вперед >>

© 2006. Все права защищены.