На главную   Контакты   Поиск   Карта сайта   Ссылки 
рефераты
 

Метод Симпсона на компьютере, стр. 1

КУРСОВАЯ РАБОТА

«Программа приближенного вычисления определенного интеграла с помощью ф – лы Симпсона на компьютере»

1. Введение

Определенный интеграл от функции, имеющей неэлементарную первообразную, можно вычислить с помощью той или иной приближенной формулы. Для решения этой задачи на компьютере, среди прочих, можно воспользоваться формулами прямоугольников, трапеций или формулой Симпсона. В данной работе рассматривается именно последняя.

Рассмотрим функцию y = f(x). Будем считать, что на отрезке [a, b] она положительна и непрерывна. Найдем площадь криволинейной трапеции aABb (рис. 1).

рис. 1

Для этого разделим отрезок [a, b] точкой c = (a + b) / 2 пополам и в точке C(c, f(c)) проведем касательную к линии y = f(x). После этого разделим [a, b] точками p и q на 3 равные части и проведем через них прямые x = p и x = q. Пусть P и Q – точки пересечения этих прямых с касательной. Соединив A с P и B с Q, получим 3 прямолинейные трапеции aAPp, pPQq, qQBb. Тогда площадь трапеции aABb можно приближенно посчитать по следующей формуле

I » (aA + pP) / 2 * h + (pP + qQ) / 2 * h + (qQ + bB) / 2 * h, где h = (b – a) / 3.

Откуда получаем

I » (b – a) / 6 * (aA + 2 * (pP + qQ) + bB)

заметим, что aA = f(a), bB = f(b), а pP + qQ = 2 * f(c), в итоге получаем малую фор – лу Симпсона

I » (b – a) / 6 * (f(a) + 4 * f(c) + f(b)) (1)

Малая формула Симпсона дает интеграл с хорошей точностью, когда график подинтегральной функции мало изогнут, в случаях же, когда дана более сложная функция малая формула Симпсона непригодна. Тогда, чтобы посчитать интеграл заданной функции нужно разбить отрезок [a, b] на n частей и к каждому из отрезков применить формулу (1). После указанных выше действий получится “большая” формула Симпсона, которая имеет вид,

I » h / 3 * (Yкр + 2 * Yнеч + 4 * Yчет) (2)

где Yкр = y1 + yn, Yнеч = y3 + y5 + … + yn – 1, Yчет = y2 + y4 + … + yn – 2, а h = (b – a) / n.

Задача. Пусть нужно проинтегрировать функцию f(x) = x³(x - 5)² на отрезке [0, 6] (рис. 2). На этом отрезке функция непрерывна и принимает только неотрицательные значения, т. е. знакопостоянна.

рис. 2

Для выполнения поставленной задачи составлена нижеописанная программа, приближенно вычисляющая определенный интеграл с помощью формулы Симпсона. Программа состоит из трех функций main, f и integral. Функция main вызывает функцию integral для вычисления интеграла и распечатывает на экране результат. Функция f принимает аргумент x типа float и возвращает значение интегрируемой функции в этой точке. Integral – основная функция программы: она выполняет все вычисления, связанные с нахождением определенного интеграла. Integral принимает четыре параметра: пределы интегрирования типа float, допустимую относительную ошибку типа float и указатель на интегрируемую функцию. Вычисления выполняются до тех пор, пока относительная ошибка, вычисляемая по формуле

| (In/2 – In) / In | ,

где In интеграл при числе разбиений n, не будет меньше требуемой. Например, допустимая относительная ошибка e = 0.02 это значит, что максимальная погрешность в вычислениях будет не больше, чем In * e = 0.02 * In. Функция реализована с экономией вычислений, т. е. учитывается, что Yкр постоянная, а Yнеч = Yнеч + Yчет, поэтому эти значения вычисляются единожды. Высокая точность и скорость вычисления делают использование программы на основе формулы Симпсона более желательным при приближенном вычислении интегралов, чем использование программ на основе формулы трапеции или метода прямоугольников.

Ниже предлагается блок – схема, спецификации, листинг и ручной счет программы на примере поставленной выше задачи. Блок – схема позволяет отследить и понять особенности алгоритма программы, спецификации дают представление о назначении каждой переменной в основной функции integral, листинг - исходный код работающей программы с комментариями, а ручной счет предоставляет возможность проанализировать результаты выполнения программы.

2. Блок – схема программы

ДА

    вперед >>

© 2006. Все права защищены.